The addition of polynomials involves adding corresponding terms from each polynomial. Corresponding terms are those that have the same variable raised to the same power. The sum is obtained by adding the coefficients of these corresponding terms and keeping the variable part unchanged.
Add the polynomials \(3x^2 + 2x + 5\) and \(x^2 + 4x + 3\).
First Polynomials: \(3x^2 + 2x + 5\)
Second Polynomial: \(x^2 + 4x + 3\)
The sum is:
\[ (3x^2 + 2x + 5) + (x^2 + 4x + 3) \] $$ (3x^2 + x^2) + (2x + 4x) + (5 + 3) $$ $$ = 4x^2 + 6x + 8 $$Add the polynomials \(4x^3 + 2x^2 - x + 7\) and \(-x^3 + 3x^2 + 2x - 5\).
First Polynomials: \(4x^3 + 2x^2 - x + 7\)
Second Polynomial: \(-x^3 + 3x^2 + 2x - 5\)
The sum is:
\[ (4x^3 + 2x^2 - x + 7) + ( - x^3 + 3x^2 + 2x - 5 ) \] $$ (4x^3 - x^3) + (2x^2 + 3x^2) + ( -x + 2x) + (7 - 5) $$ $$ = 3x^3 + 5x^2 + x + 2 $$Add the polynomials \(5x^4 + 3x^2 + 6\) and \(2x^4 + x^3 - 4x\).
First Polynomials: \(5x^4 + 3x^2 + 6\)
Second Polynomial: \(2x^4 + x^3 - 4x\)
The sum is:
\[ (5x^4 + 3x^2 + 6) + (2x^4 + x^3 - 4x) \] $$ (5x^4 + 2x^4) + (x^3) + (-4x) + (6) $$ $$ = 7x^4 + x^3 + 3x^2 - 4x + 6 $$Add the polynomials \(-3x^2 + 4x - 2\) and \(-x^2 - 3x + 5\).
First Polynomials: \(-3x^2 + 4x - 2\)
Second Polynomial: \(-x^2 - 3x + 5\)
The sum is:
\[ (-3x^2 + 4x - 2) + ( - x^2 - 3x + 5 ) \] $$ (-3x^2 - x^2) + (4x - 3x) + (-2 + 5) $$ $$ = -4x^2 + x + 3 $$