The subtraction of polynomials involves subtracting corresponding terms from each polynomial. Corresponding terms are those that have the same variable raised to the same power. The subtraction is done by subtracting the coefficients of these corresponding terms while keeping the variable part unchanged.
Subtract the polynomial \(x^2 + 3x + 4\) from \(3x^2 + 5x + 6\).
First Polynomial: \(x^2 + 3x + 4\)
Second Polynomial: \(3x^2 + 5x + 6\)
The difference is:
\[ (3x^2 + 5x + 6) - (x^2 + 3x + 4) \] \[ = 2x^2 + 2x + 2 \]Subtract the polynomial \(x^3 + 4x^2 - 2x + 1\) from \(2x^3 + 3x^2 + x + 5\).
First Polynomial: \(x^3 + 4x^2 - 2x + 1\)
Second Polynomial: \(2x^3 + 3x^2 + x + 5\)
The difference is:
\[ (2x^3 - x^3) + (3x^2 - 4x^2) + (x + 2x) + (5 - 1) \] $$ = x^3 - x^2 + 3x + 4 $$Subtract the polynomial \(4x^3 + x^2 - 3\) from \(6x^3 + 2x - 7\).
First Polynomial: \(4x^3 + x^2 - 3\)
Second Polynomial: \(6x^3 + 2x - 7\)
The difference is:
\[ (6x^3 + 2x - 7) - (4x^3 + x^2 - 3) \] \[ (6x^3 - 4x^3) + ( - x^2) + (2x) + ( - 7 + 3 ) \] $$ = 2x^3 - x^2 + 2x - 4 $$Subtract the polynomial \(-3x^2 + 2x - 5\) from \(-x^2 - 4x + 1\).
First Polynomial: \(-3x^2 + 2x - 5\)
Second Polynomial: \(-x^2 - 4x + 1\)
The difference is:
\[ (-x^2 - 4x + 1) - (-3x^2 + 2x - 5) \] $$ (-x^2 + 3x^2) + (-4x - 2x) +(1+5) $$ $$ = 2x^2 - 6x + 6 $$